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ABSTRACT 

Adding a reversibility axiom to the other axioms of Luce's 
(1959) probabilistic rank-ng theory results in an impossibility theorem 
that all alternatives in on alternative set are equally likely to be 
chosen (i.e., that preferences are random). This impossibility theorem 
is generally avoided by removing the reversibility axiom. Using simple 
algebraic methods such a modified theory is shown to contain a theorem 
similar to the impossibility result,  Thes results are discussed 
within the framework of methematical model theory - model theory deals 
with the relatioAS between sets of sentences (theories) and the 
structures which satisfy these sentences (models) - to illustrate 
the applicability of model theory as an analytic tool in theory 
development. 
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Abstract 

Adding a reversibility axiom to the other axioms of Luce's (1959) 

probabilistic ranking theory results in on impossibility theorem - 

that all alternatives in an a'ternative set are equally likely 

to be chosen (i.e. that preferences are random^. This impossibility 

theorem is generally avoided by removing the reversibility axiom. 

Using simple algebraic methods such a modified theory is shown 

to contain a theorem similiar to the impossibility result. These 

results are discussed within the framework of mathematical model 

thc?ory - model theory dca^s with the relations between sets of 

sentences (theories) and the structures which satisfv these 

sentences (models) - to illustrate the applicability of model 

theory as an analytic tool in theory development. 
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Considerable work by mäthematicr.l psychologists has been devoted to 

developing axiomatic theories of choices.  In this paper, a particular 

set of p obabilistic ranking theories (PRT) (Luce & Suppes, 136?) will 

be examined from a model-theoretic perspective. Probabilistic theories 

of choice are those which assume that an individual's choice responses 

are governed by probability mechanisms and ranking theories are those 

which attempt to explain (describe) relations between results of expei-iments 

in which individuals are asked to select one item from among a number of 

alternatives and experiments In which he is asked to ran>c order the alternatives 

Some of the most important theoretical work in the area of PRT may be 

found in Luce (1959). Unfortunately, nearly all attempts to develop PRT 

quickly lead to the apparently anomolous result to be shown below (Block & 

Marschak, i960, p. Ill; Luce, 1959, p. 69; Luce & Suppes, 1965, pp. 356-358). 

First, however, the axioms of the theory must be carefully specified. 

In ooing this, it is imp<rtant (the reasons for this will become clear 

later) to distinguish between the "calculus axioms" and the "proper axioms. 

Calculus axioms ar* those containing no "extra-logical constants" (Braithwaite, 

1959, p. ^29) and may be thought of as providing the basic logic for manipu- 

lating the sentences in the theory.  Proper axioms, on the other hand, are 

those containing non-vacuously extra '.ogical constants and correspond to the 

"substRr.L;ve'1 axioms for the theory. 

The Axioms 

The distinction between calculus and proper axioms will be made more 

clear by a specific consideration of the axiom sets used by Luce (1959). 

The calculus axioms for Luce's PRT 

miiiiiiiiiiiiiii äiirtniÜB ^BimiM.MliMliMlMiiiiiii 



^mrn^m^^w^mm^mm. m^mmmmmm^mmmw^^m^*»^»^^' 

mmmmamm mmmmmumi tiii>iiniii«wiii»iMiii,i«H<iwiii>|r<i'1 

are those of the probabüity calculus and are set out as below 

ca(l)    For S c T, 0 < P (S) < 1 

ca(2)    PT(T) = 1 

ca(3)    if R, S c T and R n S = 0, then PT(R US)- PT(R) + pT(s) . 

In axiom ca(l), T is a finite subset of the  nversal set U, and it is 

asserted that for any subset S of T, the probability that some element x 

(of T) is in S (designated by PT(S)) is greater than or equal to zero and 

less than or equal to one. Axiom ca(2) tells us the probability that some 

element x (of T) is in T equals one. Axiom ca(3) says that if R ami S are two 

subsets cf T such that the intersection of R and S is the empty set (0), the 

probabiMty that some element x (of T) is in R union S equals the sum of the 

probabilities that x is in R or S. 

he next thing to be done is to specify the proper axioms.  Let us restrict 

ourselves to situations in which an individual is faced with three alternatives, 

and let A - {a, b c} denote an arbitrary set with three elements. Then 

PA(x) will be the probability that an individual will choose x as his most 

preferred alternative from the set A (that is, the variable x may take on the 

value a, b, or c).  A might be the set of dishes on a menu with "a" representing 

roast beef, "b" 5 teak, and "c" hamburger.  PA(a) would then be the probability 

of preferring roast beef out of the alternatives in A. 

Further, let p(x, y) denote the probability that an Individual prefers 

alternative x to alternative y in the reduced set {x, y}.  Finally, p"(x, y, z^ 

will be the probability of ranking the three alternatives from most preferred 

to least preferred in the order x, y, z. The notation pCx, y) and ^(x, y, z) 

is an abbreviation of the set notation introduced above. For example, p(x, y) 

replaces P{X) y}(x). and statements like P{Xj y}(x)+ P{x>  (y) - 

{x y}^ ^ V^ ^ = ' are rewritten 

BMrf mu"""-,**. •TiiBMrinnr ̂ ■■^^^i^^^s^siswsas^s^^sT.... ;--—•— 



P!lil|8||lM|l%^!kl»«t^^ 

mmmmmimmmvmmmmmmmtiiWM mjmtmmmumimmiiMmmimH mmiimiiimimjemm 

as p(x, y) + p(y, x) = 1.  !t will be assumed throughout this paper that 

none of the functions PA, p, p takes the value zero for any argument. 

With this notation several proper axioms relating how clternatives are 

ranked can be writte.i. The first such axiom will be the decomposition 

axiom: 

pa(l) (Decomposition): ^(x, y, z) = PA(x)p(y, z) 

The decomposition axiom simply states that the probability of preferring 

x to y and y tj z may be decomposed Into the. product of the probability of 

choosing x as the most preferred alternative in A and the probability of 

preferring y to i:. 

The second assumption is the consistency axiom: 

pa(2) (Consistency):  (l) PA(x) = ^"(x, y, z) + ^(x, z, y) 

(If) p(x, y) = jTU, y, z) + p{x,   z, y) + ^"(z, x. y) 

The intended interpretation of this axiom should be fairly self evident. 

It simply asserts that there is consistency between choice rankings and that 

adding  irrelevant alternatives will not change the ranking. An Important 

concern then might be in alternative ways of calculating p(x, y). That is, 

what Is the probability of say, preferring steak to roast beef when hamburger 

is not available? Proper axioms (1) and (2) together with the calculus 

axioms can be used to prove: 

P,>.) 
Theorem 1: p(x, y) = 

PpM  + PAW) 

Proof: 

(1) p(x, y) = PA(x)p(y, z) + PA(x)p(z, y) + PA(z)p(x, y) 

by pa(2)(li) and pa(l) 

(2) p(x, y) (I - PA(z)) - PA(x)(p(y. z) + p(z, y)) = PA(x) 

since p(y, z) + p(z, y) - I 

i 

I 
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(3)  p(x.  y) 
PA(x) 

(1  - PA(z)) 

CO   I  - P.(z)  - Pfl(x)  + PA(y) 

(5)   p(x,   y) 
P   (x) 
_A__ 

PA(x) + PA(y) 

1   - P   (z)   Is assumed to be ^ 0 

by ca(2)  and ca(3) 

by substitution of (4) into (3)1. 

Theorem 1, in a more general form, is knowr as Luce's choice axiom.  It 

can easily be snown that Theorem 1 together with proper axiom 1 or proper axiom 

implies the other proper axiom. This can be shown to be true where the 

cardinality of the alternative set A Is any finite n and not only for n equal 

to three. Equally important, there Is empirical evidence suggesting that 

Theorem 1 provides highly accurate predictions of reduced set choice 

probabilities for certain types of alternative sets. 

Now, let PA
A(x) be the probability of choosing x as the le^st preferred 

alternative in A. Similarly, let pMx, y) " P*   , (x) and let p*(x, y, z) 
tx, y> 

be the probability of having the rank order x, y, z when asked to rank from 

least preferred to most preferred.  The last proper axiom, the reversibility 

axiom, can now be stated: 

pa(3) (Reversibility):    (i) p*(x, y, z) = p"(z, y, x) 

(ii) p*(xl y) * p(y, x) 

(lii) pa(l) and pa(2) hold for P^, p*, p* 

The reversibility axion; simply states that the probability of getting a certain 

ranking when going from most preferred to least preferred Is the same as 

getting the reverse of that ranking when the criterion is going from least to 

most preferred. 

Surprisingly, it is possible to prove that if decomposition, consistency, 

and reversibility hold, all alternatives are preferred with equal probability, 

that is, that preferences are random.  In other words: 

■ ■ ■ ■ 
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Theorem 2:  PA(a) - p^b) = PA(c) = PA*(a) - p^fa) , ^*U)  a  ]/3   # 

Proof.  It will be sufficient to show p (x) - P (y), since axiom pa(3) Impll 
■i. M 

es 

the same  result  for P    . 
A 

(1) F(x, y, z) = PA(x)p(y, z) by pa(l) 

(2) p (z, y, x) = PA (z)p
,v(y, x) - PA

A(z)p(x. y) 

(3^ PA(x)p(y, z) - PA'(z)p(x. y) 

„s     , .     PA^^P^. y) 
(*») P (x) = —  

A    p(y, z) 

t\    , v    pA^z)p(y. x) 
(5) PA(y) =~£  

A      P(x, z) 

(Ö) p(x, y) •     A 

PA(x) f PA(y) 

by pa(3)(iil) and (il) 

by pa(3)(i) applied to steps (1) and (2) 

by rewriting (3) 

by interchanging x and y in (k) 

Theorem I 

(7)   p(x.  y)   =— 

PA'
fU)p(x>  y) 

p(y, z) 
p «/,v  /        \       TTTTT T by substituting   (^4)   and  (5) 
PA UM*, y)  PA (z)p(y, x)      into (6) 

p(y, z) 

(8) p(x, z) = p(y, z) 

(9) p(x, y) = P(z, y) 

p(y, x) = p(z, x) 

(10) p(z, x) = P(z, v) 

— + 
p(x, z) 

by simplification of (7) 

by interchanging the positions of 
x, y, z in (8) 

since p(z, x) = 1 - p(x, z) - 
1 - P(y, z) = p{z, y) 

CO p(x, y) = p(y, x) = 1/2 by (9) and (10) 

(12) PA(x) = PA(y) substituting 1/2 for p(x, y) in (6) .| 

(For a proof of Theorem 2 for the n-alternative case, see Luce £ Suppes, 1965, 

PP. 356-358.) 
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These results seem contrary to experience. Unfortunately, the culprit 

is not obvious. Proper axioms (1) and (2^ are the most likely suspects.  However, 

together they imply Luce's choice axiom (Theorem 1) which has considerable 

empirical support. Moreover, Luce's choice axiom together with either proper 

axiom 1 or 2 implies the other. Thus if it is wished to retain Theorem 1 as a 

theorem, both proper axiom (1) and (2) must be retained.  If, on the other hand, 

Theorem 1 is made an axiom, then both pa(l) and (2) must be thrown out.  Axiom{3) 

(reversibility) seems to be some psychologist's favorite candidate for elimination, 

Their argument is that it makes no operational sense to ask a person to pick 

his "least preferred" alternative from some set of (homogeneous) alterna- 

tives.  At least at first glance this claim appears very unconvincing (though 

the reader who sees potential merii; in it is referred to Luce 6 Suppes, 

1965, p. 358, where the position is spelled out). One need only introspect 

for a moment on the alternative set consisting of a thousand dollar bill, 

a hundred dollar bill, and a one dollar bill.  Few people would find it 

difficult to pick out their least preferred alternative. 

Theorem 2 is not, it would seem, a trivial result.  It was obtained 

by making three apparently innocuous assumptions about how Individuals 

related choice probabilities over a three alternative set. Yet these 

proper axioms together imply that unl^Sä r (a) = P^b) ■ Pfl(c), any 

individual who ranks the alternative elements of a three element set in 

the same fashion regardless of whether he ranks them from most preferred 

to least preferred or from least preferred to most preferred is exhibiting 

behavior which is inconsistent with that described by proper axioms 

(1) and (2). 

What then is the theorist to do in the face of such an anomaly? 

One option is, of course, to ignore proper axiom  (3) and simply develop 

Ud&äteUktekk ifiiiirühftiiWilltiitiiiiif nlntrMHiliMilii^tMfdM . 
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the theory using proper axioms (1) and (2). A second option is to investi- 

gate the mathematical structure underlying the axioms in question to see 

whether results which appear disturbing result directly from equally dis- 

turbing (but more subtle) properties of the class of models satisfying these 

axioms (and therefore theorems as well).  Indeed, this appears to be the 

approach suggested by Luce and Suppes (1965) when they wrote: 

They Criticisms of probabilistic choice theories) suggest that we cannot 

hope to be completely successful M dealing with preferences until we Include 

some mathematical structure over the set of outcomes that, for example, permits 

us to characterize those outcomes that are simply substituable for one 

another and those that are special cases of others. Such functional and 

logical relations among the outcomes seem to have =» sharp control over the 

preference probabilities, and they cannot long be Ignored   [p. 337]. While 

it is not completely clear what is meant by the above passage, it does seem they 

are suggesting a closer investigation of the mathematical (logical) structures 

underlying various theories of choice. This paper represents an attempt 

to explore this suggestion for probabilistic ranking theories which contain 

proper axioms (I) and (2). 

Model Theory 

In most of the behavioral science literature, no clear distinction is 

drawn and maintained betwean models and theories.  Indeed, perhaps the most 

common practice is to use "model" and "theory" 'nterchangeably as synonyms 

as in Tversky (1972):  "Since the present theory describes choice as 

an elimination process governed hy successive selection of aspects, It 

Is called the el iminat ion-by-aspet,Lö (EBA) model   [p. 285j".  It would seem 

that, from Professor Tversky's perspective. It could as well have been 

called the EBA theory. 

M**"»-*-^   iiJiMirirtlt*'—■■' ■"-■—'^iiMimlMtfMti— -.-«itai JMrtHMirfrfaiiiirtMfwmi i         
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There certainly is nothing wrong with having synonyms for such frequently 

used words as "theory." However, when "theory" Is used in Its technical 

sense, there is a clear distinction which can be made between "models" and 

"theories," and this distinction has ".seful consequences for the topic at 

hand.  A theory, in its technical sense, is a set of sentences which is 

closed under deduction; that is, the set contains any sentence that is 

logically implied by any other sentences in the set. This concept requires 

some preassigned logical framework (e.g., first-order predicate calculus) 

(Quine, 1968, p. 281). Whenever an axiom system is proposed (as in 

Tversky, 1972), this usage of "theory" is implied. On the other h-and,, 

a nontechnica* theoiy is simply a set of sentences asserted to be true. 

For example, the entire body of knowledge on some subject may be referred 

to as the theory of that subject, as in the phrase "choice theory." 

A corresponding technical notion of a model for a set of sentences 

(theory) is a mathematical structure which satisfies those sentences. Thus 

a model is a set-theoretic structure while a theory is a collection of 

sentences in some language. More specifically, a set-theo-etic structure M 

is a set of elements (objects), A = fa|, 32,...}, together with a set of 

i 1   i?. 
relations of order !• Pi  i P2  »•••> anc! may be expressed 

M = <A; P,'1, P^2  P/V-v • 

A formal language L in «iilch properties of M can be expressed will 

consist of fomulas generated by a specified set of rules, say the predicate 

calculus, from an alphabet consisting of relation symbols (R , Ro,..), 

variable symbols (xj , X2,...), connectives ("Sv,A,...)i and quantifiers 

(V,3).  Since functions and constants are special kinds of relations, 

function symbols (f^, f2,...) and constant symbols (ci, C2,...) will also 

be used in L. The language L will be assumed to be first order, that Is, 

»^■^ Tin M.rililiif>^MlhTT|-lU mimn miii^lflililBf MM-WriW^WMiiiiHtiaiilili^ 1    mmr  i   i .. 
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its  varlab;es   range over  the elements  cf A   (as  opposed  to ranging 

over  th« subsets  of A.  or sets of  subsets,  etc.).     Sentence,  in  L  are 

formulas  containing no free variables. 

Let  T be a  set  of axioms   in a   language  L.      If <p is a mapping  of 

constant   symbols occurring   in T   into   the set of objects  A,  and  also a 

mapping of  .elation  symbols  occurring   in T   into  the  set of   relations   in 

M,   the.  M provides  an   irterprecation  of T undercp.     If  this   interpretation 

results   in  the  sentences   in T being   true,   then  M   is   said  to satisfy T 

and M   is  a Mde]  of  the axiom set T.     A model   for a set of axioms   then,   is 

a set-theorrtic mathematical  structure which   interprets   the axioms   in  such 

a way  that   the axioms ar ;  true. 

The distinction just made between objects  and  symbols  denoting 

objects   (constants)   and between  relations and  relation  symbols  should 

be emphasized.    The  reason  for this  distinction   Is  that each mapping 

onto  the objects  and  relations  in a  structure M provides an  Inter- 

pretation of  the  symbols   in T.    This   is   important  since   (as will   be  shown) 

a given  axiom set  can have more  than  one   interesting   interpretation,   and 

only some of  them will   be models of   the  set. 

One of  the most  obvious  problems  with  the above definition of model 

Is what   is meant   by  a sentence being  "true."    Rather   than provide  an ex- 

tended  discussion of  truth,   the  reader   is   referred   to Tarski   (l^A) . 

The   important question  here   is  not  how  dw we  know whether a particular 

sentence   is   in   fact   true  but   rather what   is .^ant   by asserting a  sentence 

to be   true.     This   latter semantic question   Is   treated   in  considerable 

detail   by Tarski   for   important  classes  of  formal   languages   (including 

those   to  be dealt with   in   this  paper). 

In  order  to make   this  defln'tion  cf model   more clear,   consider  a  very 

simple   theory T1  which contains only   two proper axioms: 

""-—^---^-****. ■■ .i■MinawliiiaBiriiii» «mTitiiWJwmiin'MMiniiiinrii i lsaUB«io.i»'««llSÄ»*,is«i( .v«««,, - 
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Al:     0/x,)   -»(xjRx,) 

A2:     (Vx|)(Vx2)(Vx3)[(x)Rx2 A X2RX3) r» x^J . 

CoPsider further the following two mathematical   structures: 

«*: <A;P2) 

and 

MA*: <L;F2) 

where A Is a finite set of alternatives and p' 
is the binary relation "is preferrtt] to" 

where L Is the set of living males and F2 

is the binary relation "Is the father of". 

If the symbol R is mapped onto P2, and the variables are assumed to range 

over A, then Al would read as "for all alternatives In the set A, It Is 

never the Ci»se that an alternative in A is preferred to Itself." Axiom A2 

would read:  "For any triple of alternatives in the set A, if the first 

alternative is preferred to the second, and the second Is preferred to 

the third, then the first alternative is preferred to the third." To 

claim M to be a model of T' Is to assert the truth of these two 

sentences (Al and A2).  Further. TarskI (W) shows that asserting a 

sentence to be true Is equivalent to saying It Is satisfied by all Its 

objects.  Again, there exists no clgori_hm for determining whether a 

particular sentence Is In fact satisfied by all Its objects. However, to 

assert that T' is modeled by M is to say that each sentence in T' Is 

satlsfud by all its objects. 

Let us now examine the relation between the structure MA* and the 

sentences In T'.  Do we want to assert that M** is a model of T'?  In 

this case the «^ function maps the relation symbol R onto the relation F2. 

Interpreting Al with M** results in the sentence: 

"For all males in the set of all living males, it Is never 
the case that a male is the father of himself." 

fcuaattuitu : W^M^M.^^,..^^,..  Wik*^^-.^.:..^'.^.        ..■    . ■     ..._-. 
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To assert that M  is a model for r is to assert this to be a true 

sentence. And, Indeed, the sentence is empirically true. However, we 

must be careful not co move hastily from this observation to asserting 

that M*'" is a model for f'. T',e definition of a model requires that aU. 

the axioms be true when interpreted by a model.  Consider A2. Under MAA 

we have the following sentence: 

"For any three males in L, if male, is the father of male, 
and male2 is the father of male3,  then male, is the 
father of malej." 

Again, to assert M** is a model for T' is to assert the truth of this 

sentence.  Yet this sentence is empirically untrue.  Inceed, an ordinary 

language translation of this sentence would result In the assertion that 

a grandfather is the fathjr of his grandson. The reason "is preferred to" 

seems a satisfactory Interpretation of R and "is the father of" does not 

is that "is preferred to" is gene-ally thought to be a transitive relation 

(as asserted by A2) and "is the favW of" is not transitive. Thus the 

structure M** is not a model for T'. 

Another transitive relation is "is greater than." If the letter "I" 

denotes the set of integers, and ">" denotes "is greater than," then the 

structure (l, >)is a model for T'. A third transitive rslation "Is greater 

than or equal to" may be denoted by ">".  Consider whether the structure 

(1, >)is a mode] of T'. Clearly axiom A2 is true with this Interpretation; 

however, Al reads as follows: 

"For any Integer, it is never the case that the integer 
is greater than or equal to Itself." 

Most of us would assert this se. tence to be false and not allow 

/l, A as a model for T'. 

■--'--• lUlllliiilHiliMi ii   i     n —^■—>■ .■  ^'IIMiflMftlilriilrl r  «Ki.dl 
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Hopefully, these overly simplistic examples provide a general sense 

of how the terms "model" ,-ind "theory" are being used in this paper. 

Moreover, It should be clear rrcH,^ the abo-P discussion that It is possible 

to develop a theory of models.  In Robinson's (1963) words; "Model 

theory deals with the relations between the propertice of sentences or 

sets of sentences specified in a formal language on one hand, and of the 

mathematical structures or set« of structures which satisfy these sentences, 

on the otner hand  [p. ]]"# 

Not»i the similarity between Robinson's definition of model theory 

and Luce and Suppes1 qucte In the previous section.  In the next section 

a result analogous to Theorem 2 (proved using proper axioms (l) - (3)) 

will be shown to exist for the nwe commonly encountered proper axioms 

(1) and (2), and some of the model theoretic concepts Introduced here 

will be used to analyze these two axiom sets. 

Algebraic Results 

This section begins with some algebraic manipulations on the 

equations in proper axioms (1» and (2). The results, theorems 3 and k,   together 

with theorems 1 and 2, will then be discussed in model-theoretic terms. 

In the three alternative case there are six possible rankings of 

those alternatives.  For nocptional convenieice the corresponding 

probability values will be denoted by the set of symbols 

C= (aj, 32, b], b2f C|, C2} as follows: 

p"(x, y, z)  =  a, ^"(y, x, z) = b2 

p"(x, zs y) - a2 p(z, y, x) = c, 

p(y„ z, x) "  b, p(z, x, y) - c 

mmmmmmmmimM «-"•■"■■" ■ ■  ,  
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The following derivation in terms of the value a - p(x, y, z) may be 

dpplied to each of the elements int.  In tiie decomposition formula for 

?U, y, z), 

PU, y, z) « FA^) • p(y, z). (1) 

(!) may be expanded by making substitutions on the right according to the 

formulas in axiom pa(2), yielding 

F(x, y, z) - (pTU, y, z) + ^"(x, z, y))(p"(x, y, z) + p"(y, z, x) + p(y, x, z)) 

Substituting the notation from above yields the equation 

(2)1 

aj ■ (a, + a2){a]  + bj t b2). 

Expanding the right side of (3) 

2 
+ a a9 + aib, + a,bo + a-b, *■ a0b , al  al  ' "1-2 

and collecting terms 

2 
a,2 + (a2 + b, + b2 - 1)aj + a2(b1 + b2) 

(3) 

W 

is) 

yielo-> a quadratic expression In a]. Applying the quadratic formula to solve 

for a. results in 

1 - (az + b, + b2)+ /(I - (a2 + b, + b2))
Z - ^(b, + b2)   (6) 

And  letting g(yi> y2,  yo)  denote  the function  represented  in   (6), 

1   -  (V)  + 72 + 73)  t>A]   -   (y]  + 72 + 

g(yi. y2t v^ 

the results of applying tiie above procedure (1 - 6) to each of the six 

rankings are abbrevici'.ed as follows: 

a1 = g(a2, bj, b2) b2 = g(b.| , a,, 82) 

a2 ■ g(a1, Cp c2) c, = g(c2, b,, b2)      (8) 

b1 •■ g(b2, c,, C2) c2 ■ 9(0,, a,, a2) . 

Making the natural assumption that all the probability functions are 

real-valued, the quantity under the radical in (7) must be nonnegative, thus 

yielaing six Inequalities of the form 

73))   - ^2 ■»• ya)   (7) 

«■ ——^- JMMiMUMniW ■  n     i. MmMiiri   i nuinii umiininf ■»:.JUr.r>y.-.--J-Qr^C^"- 
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(1 - (y, + y2 + y3))
2 - ky]{y2   + y^) > 0< (g) 

In the next section, the consequences of varying this assumption are 

considered. 

Suppose now that the values in tare not all equal. What ara the 

implications of the equations and inequalities derived above upon the 

range of va'ues that elements oft may assume? Theorems 3 and k  and Inequality 

(17) show Lhat even after removing -xiom pa(3K the elements oft can take 

on relatively few values. 

in order to further simplify the algebraic calculations, let the 

variable symbol o be defined in the »'ol lowing equation: 

Y, + 72 + YJ = '/2 + a . 

Substituting (10) into (S) gives 

(1 - (1/2 + a))2 - Vi(y2 + y3)  10, 

and rewriting (10) as (y2 + y^} » 1/2 + a - y, gives 

(1 - (1/2 + a))2 - ^,(1/2 + a - Yj) ^ 0 ,and 

y1  - (1/2 + cOy, + - 
(1/2 - a)2 

> 0 

(10) 

(H) 

(12) 

(13) 

Applying the quadratic formula again, this time to find the zeros In (13), 

the expression on the left In (13) is shown to take on the value zero when 

y1 = {Wh  + a/2) + yZh (0 <_ u ^ 1/2), (14) 

and hence (13) is satisfied when the value of y, is outside the Interval 

Since only six different sets of values for the arguments of the g 

function are of interest (cf. (8)), the corresponding six v-Jues of a can be 

denoted as fol lows-, 

b, + a1 + a2 = 1/2 + ob| 

c2 + bj + b2 - 1/2 + a 

c, + aj + a2 - 1/2 + a 

a2 + b, + b2 = 1/2 + aa2 

3] + Cj + c2 = 1/2 + a,. (15) 

b2 + c, + c2 ■ 1/2 + ab. 

177. ^ -..^-.^,.——  .   ,. .....      - ^■^■^^W^.^^^A.^^.^..,. Vfo. i ' 
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Observe that a. = -a 1   -a2. »b, 
3 "0b2. ttc, -ac and that all the a'5 

are in the interval (-1/2 1/2) 

Theorem ?•:  1^ «a, " ^a- aC2 =: 0' then a'' t;he values aj, a-,..., Cj 

are equal. 

Proof: From (15), a1 - b2, a2 ■ c2, and b, - r,. 

Substituting a, for b2 In (3), yields 

(i) a, = (a, + a2)(2a, + b,). 

Using the same procedure as above (1 -6), an inequality analogous to (9) 

can be  derived from (i): 

ill)   (1 - (2a2 + b,))
2 - 8a2i>1 >_ 0, 

which can be rearranged as 
/b,   -  l\l 

+  l)a2 +\—2 /   1 0- (iii)   a2     -   (b1 '?   '\     2 

Applying  the quadratic  formula again   results   in 

b 
(iv)  a2 < 1/2 +Y  mJb]' 

This inequality may also be derived for the pairs ^b,, bj) and (b2, a?) , that h 

b2 
(v) b, < 1/2 + - -JZ 

2 

32 

and 

(vi) b2 < 1/2 +y -J7^. 

The inequalities (iv) - (vi) together with a2 + b, + b2 = 1/2 imply that 

each of the values a2> b,; u2 is less than .19. For example, if a2 - .19, 

then (vi) implies b2 < .16, and hence ^ = 1/2 - (a2 + b2) > .15. However, 

b, > .15 implies a2 < .19 since the function (1/2 + b,/2 ->/b^) is a 

strictly decreasing function in the interval [0, ij and its value at b ■ .15 

is less than .19. This kind of contradiction can be derived if any of the 

values in C is >_ .19. Hence all six values must fall in the Interval 

(.12, .19). 

l""^ . „..-. ..-..•—. ■jzsasBBBtesü «IV* ■ ■rW«IWItt«Wl«MB»^»MMa«M«»^y^jnt|.|MfBrt^.M^u.^,» 
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Now it is straightforward to show that (i) implies a - a,. Let 

a2 » aj + e where 0 < |e| < .07. Then 

Sj - (aj + a2)(2a1 + b^ 

- (23^ + e)(1/2 - e) since b + i, + a2 - 1/2 

- a, + e (1/2 - e - 23^ 

which Implies (1/2 - e -23^) ■» 0;and hence a, - }/k  - t/2 >  .215  Therefore 

e" 0 and a]  » 32« The other equ3lities are derived similarly. I 

Thus the 3SSumptlon th3t not all values int- are  equal implies -rhat at 

at least one of the ex's is greater than 2:ero. For deftnlteness assume that 

aai>  0» and *et O denote this particular value,  Substituting a, for y) In (13) 

yields 
(1/2 - a)' 

a,  - (1/2 f a}3| +- 5  >_0 , (16) 

which Implies (cf. 1A) 
föT a  /a 

3, < {]/k  + a/2) -VF, or ai >. 0M+ 2) +J7  . (17) 

Tha<- Is, given the value of c»a) > 0,  the value of aj lies outside 

/— 0al 3n interv3l of length ^/2aa. centered at (lA + -jr). By the synnetry of 

the expression in (9), the sum (c, + c2) must also lie outside that Interval 

For exsmple, If oaj = 1/8, then either a, <^ 1/16 snd c^ + c2 > 9/16 or 

a, >_ 9/16 3nd c, + c2 <^ 1/16. 

Does this result make a difference? The following detailed example 

illustrates the implications of (17).  It is only loosely anslogous to s 

choice experiment in Luce's sense; however, intuition suggests th3t axioms 

pa(i) and pa(2) should hold. 

Inwylne three b3rrels, l3belled U, V, W, e3ch of which cont3lns ten 

balls of varying size.  Barrel U contains 5 balls of size u., 3 balls of 

size u2, and 2 balls of size uj.    V contains k  balls of size v., 3 of size 

^2»  and 3 of size Vo. W contains; 1 ball of size w^, 3 of size w2, and 6 of 

k^mt .^■^^>i.t.;^.^'L...vJ '--—jr'-'- ^"-^' ■■■'- ■■-"  ■' ^r^rr-rrv- SSSSSSBHS 
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size w3  The relative sizes of the u, v, and w's are 

ul > V wl > u2> v2 > w2 > u3 > v3 > w3- 

An event will consist of drawing three l.-alls,, one from each barrel. 

There are a number of probability functions one could compute in this 

situation using elementary notions of probability theory (i.e., expressions 

Impit'Sd by ca 1-3).  Let q. (X) denote the probability that the ball drawn 

from the X Wrel (X = U, V, or W) is the largest of the three drawn in a 

oiven event.  Let q2(X, Y) bn the probability that the ball drawn from 'A   Is 

bigger than the bail drawn from Y. And finally, let q3(X, Y, Z) denote 

the probability that the sizes of the three balls are ordered x > y > z. 

The vah.-es of the three functions for this example are as follows: 

q.OJ) = .698 

q^V} = .254 

q (W) = .048 

q2(U, V) - .740 

q2(u, w) - .890 

q2(V, W) = .850 

q2(V, U) = .260 

q,{W, U) = .110 

q3(u, v, w) ■ .596 

q3(u, w, v) - .102 

q3(v, w, u) ■ .062 

q3(v, u, w) - .192 

q2(W, V) = .150 

qßCw, v, u) - .006 

q3(w, u, v) ■ .042 

Using the letters a^, a2  c2 as before, we have a - .596, a » .102, 

b1 = .062, and bj + a, + a2 = .76 = 1/2 + .26 = 1/2 + ab|. Applying 

(17) to bp 

/C26 1  .26 
b, < ■zr + T" 

or 

b, > 5" 
.26 

< .38 - .36 = .02 

"T" > .38 + .36 = .74 
26 

However, b does not satisfy either inequality, implying that the functions 

qj» q2» and «la do not satisfy axioms pa(l) and paU). 

For the case being discussed in which at least one of the a's Is assumed 

greater than zero, an even stronger result than (l7) can be shown. 

■,•■■ 
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Theorem k:     Let aa > 0. Then given two values a, and aa. (satisfying  17), 

there exist exactly two combinations of values for 32, h,, b2, c^, C2 such that 

pa(l) and pa(2) are satisfied. 

Proof: To show that 82 depends only upon a, and aai, combine (7) and 

(8) to get 

1 - (aj + c. T cj/ ;' 
(i) a2 = 

+ c,) + /(l - (a, + c, + C2))2 - 4a, (c, + c2) 

From (15). 

(ii.v c, + c„ = 1/2 + a£ 1  d1 
3,  ■ 

Substituting (ii) into (i) gives 

(i i i) a0 

(1/2 - oai)  +      /(1/2 -  aa,)-  - l»a,(1/2  <- aai   " ^i) 

To derive a formula  for C2,   begin again as   in   (i) 

1   -   (c,  + a, + 32)  +    yO   -   (c,  + a,  + a2)   - kc^ia^  + 82) 
(iv)   c2 = 

and substitute (ii) into (iv) . The resulting expression can be simplified to 

2 2 
(v) (C2 + (a2 + aa1 " 'Z2)) = (c2 - (a? + 

aa]   '   W2))     +  M^+a,- oa1)(a 

The squared terms cancel in (v), which can then be solved for c»: 

+  a2).| 

(vi)   c2 = 
(1/2 + aa]   - a]) (a,   + 32) 

(1/2  -  «a,  + a,) 1  T u! 

Solving   (ii)   for c    gives 

(vii)   c    =   1/2 + oiai   - ; 
■2 ' 

Formulas for b and b1 are derived In a similar way, using another 

equation from (15) 

(viii) b, + b2 - 1/2 - aa] - a2: 

(1/2  - aai   - 32) (a,  + a2) 
(ix)   b2 = 

(1/2 + aa    + a2) 

I 
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Observe that two values arc generated for 32» but that for each of those 

values there is a unique set of values for b., bj, c , and C2. i 

As an example of a set of values obtainable according to the forViiulas 

in theorem *», let a1 = 7/6^ and aa, = 1/32. Then 

a    -    
9      h    - 2]'27      K 2' 21-27 27 a?- ~ P"      bl   " ITT^r      b2 - TTTT      C,   - ^yr^- and     C2 = 5ynr • 

or 

= 21       b    =    9-27 9-28 -   c, = 27-9 _ 27-28 

Consider now a mode. 1-theoretic framework in which the theorems proven 

above in the axiomatic choice theory can be discussed.  The first step is 

to define a first-order language L adequate to express the axioms and theorems. 

L wi'l contain the following components: 

(a) Relation symbols to represent >, fR 

(b) Function symbols with the appropriate number of arguinents for the 

probability functions P., p, p, P  , p"-'', p* 

(c) Function symbols for +, -, •, -r, v/- 

(d) Constant symbols for 0, 1 

(e) Variables x,, x?,..- 

(f) Logical connectives "i, v ,/>,=>, « 

(g) Quantifiers V, 3 . 

fR Is the set of real numbers and '--;; is treated as a logical connective 

meaning identity. A rela^i^n symbol for fR is needed so that the sets A and fR 

can be distinguished, that is, so that variables can be quantified over just 

A or just fT^ .  Generally the lonica! symbols remain implicit and L may 

be described by writing a vector of non-logical symbols, analogous to the 

notation for structures.  (Function symbols will have a superscript denoting 

the number of arguments f' , even though f represents an n + 1 place relation.) 

The language L is given by 

2 1.12.3 23        2        .':        2 2 1 
L = (Ri • ^2 ' fi ' V' r: ' f4 • f5 • f6 • V' f8 ' V' V ' fn ; c,  , c. 

il^f 1 mniHirtai'- ■~,-irf^-*~.-'-~:-—■-.*-- - fcatttabutu» 
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where the symbols are written in order corresponding to the order of their 

intended interpretations in (a) - (d) above. That is, R^  corresponds tc 

">", f, ' to "Pj-, f_2 to "+". etc. - '   'k    uu rA ' '7 

AF an example of a formal sentence in L, the decomposition axiom 

pa(l) can be translated 

pa(l):  (VX^VXZHVJ^-IX, - X2A i x, = x^ nx2 - X3 A-1R2'(X])A 

-^(XjjA   -R2
,(X3))^    ^(X,.    X2>    X3)    »    fg^f^X,),    f2

2(x2.    X3))]. 

In addition  to pad)   -   (2)  there are a number of   implicit and explicit 

assumptions employed  in  the   Ffrst  part of this section which  should be 

seated as prope- axioms.      Implicit  are all   the  field axioms   for   reai   numbers 

such as associativity,   distributivity,   existence of 0 and   1,   and  the basic 

axioms for an order relation.     These w  11   be  referred  to as  the axioms 

for an ordered field.     Second,   it was assumed  that  the  set  A contained exactly 

three elements,  and further  that  the square  root  function was defined only 

on nonnegative numbers.     These axioms may be written  as  follows: 

pa(4)   Axioms  for ordered   field 

pa(5) (3x1)Qx2)Ox3)((^x1 = X2A -ix1 = X3A ->x2  = x3 A 

-^(X^A -»Rj(x2) A-ttJ^) A (Vx4)(-iRl(x4) ^ = x,v x^ = x2v x^ 

pa(6) (Vx1)(Vx2)(R2(x]) A Rj(x2)o (fii(*]) =x23 x^  c,)). 

For the remainder of this section the notation T(i ,..., i.) will denote 

the subset of proper axioms consisting of {pad,),..., pa(lk)}. 

The notion of "intended interpretation" is made precise by defining a 

class of structures/^ whose members contain the particular functions and 

relations used in the analysis of this section. Let/(\0 be the collection 

of M's such that 

M = (AUIR; > ,(R2 ; PA, p. p, p^, p*p*+. -, ^ , ^;  0, 1 ). 

= x ̂  
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A is any three-element set,(P?2 is the membership relation on (R s P (and 

P
A ) "«P5 A into fF^ , p (and p''} maps A x A into (ft, p (and p ) maps 

A x A x A into fR , and the remaining functions and constants are defined 

on !R . That is, for any interpretation «p of sentences in L into a structure 

cp(c ) = 0, etc. Thus two structures M and M' in/^Q differ only In the 

six "p" functions and in the choice of set A. 

Within the class^- there  : structures wnich satisfy some of the 

various subsets of 1(1,.i., 6). M  has been defined such that each M inA\0 

satisfies TC», 5, 6). The structure defined in the barre example, 

Mb = ({U, V, W} Ü IR ; i, IT^ , qp q2, q3, +,...) , satisfies 

T(2, 4, 5, 6), but does not satisfy T(l, 2, k,   5, 6). Theorem 2 states 

that any structure in/A0 satisfying TO,..., 6) must be one in which 

PA(x) = 1/3 for all arguments x, p(x. y) ■ 1/2 for all x,y , and 

pU. Y, z) ~  1/6 for all x, y, z. Hence any two such structures M and M1, 

since they differ only in having different sets A, A', are isomorphic. 

Thus the axiom set TO,..., 6) has essentially one model 'n/Hg,  Restated 

in this way Theorem 2 does not seem anomalous or contrary to experience. 

Similarly, Theorem ^ characterizes the subclass of .MQ whose elements 

are models of T(l, ,,., ^4, 5, 6), ,jnd this subclass is also very small 

relative tn A\ , 

Conclusion 

At  the end of  the previous  section,  the class  of models  for  the 

axiom set T(l,  2,   b,  S,   6)   was  described as  being  small   compared  to Ai., 

even  tiough both are countably   infinite classes.     In order  to make sense 

out  of  that  statement consider   the   inequality   (17).     It   Implies   that  for 

■•■.;'; 
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two specific values such as pU. b, c) and P^c), if their sum is greater 

than 1/2 by an amount a, then ther.» is a subinterval or "hole" in the 

interval (0, !) which must not contain either p"(a, b, c) or P (c) .  In 

fact, the size of that hole is given precisely as/& .  However since 

the value of a depends upon the values of p and P  there is no fixed a 

which applies to all structures in/\ , and thus (17) only gives a rough 

idea o^ the restrictions imposed by the axioms. 

A better, but still intuitive, approximation on the relative size 

of the class of models can be derived from theorem k.      It states that 

only two probability values(which satisfy (I7); e.g., p(a. b, c) and 

PA(c)) need be known inorder to compute all the remaining values In a 

model.  For an arbitrary structure lT\/\Qt   however, five values for p" 

would be needed in order to compute the sixth value using ca(2).  In a 

very loose way, the class of models could be thought of as less than 

two-fifths the size of/\0.  Thus it would seem that these axioms put 

"more11 constraints on the way choice probabilities may be related than 

has previously b»en thought to be the case. 

As pointed out in the first section, the scarcity of models for an 

axiom set usually has led to attempts to identify "troublesome" 

axioms and remove them from the theo;y under consideration.  However, 

that approach sometimes causes the 'oss of useful theorems (theorem 1, 

in our example).  The point here is not whether it is desirable to have 

few or many models for a theory, but rather tc of^er an alternative to 

the axiom-elImination approach.  In model - :heoretic terms, that alter- 

native is to enlarge or change the class of structures   In which models 

may be sought. 

'.; 
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Footnotes 
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